¿La energía de un orbital depende de la temperatura?

En la solución de la ecuación de Schrödinger para los niveles de energía de los orbitales electrónicos del átomo de hidrógeno, no hay dependencia de la temperatura.

mi norte = metro mi mi 4 8 ϵ 0 2 h 2 norte 2

Tal vez esto se deba a ignorar los efectos de la temperatura al derivar el hamiltoniano. Ninguna fuente que he visto menciona ninguna suposición sobre la temperatura. ¿Las energías orbitales de los electrones dependen de la temperatura a pesar de esta ecuación común?

Si tiene gas de hidrógeno calentado hasta casi la ionización, entonces debería tomar menos de 13.6 eV para eliminar un electrón.

Por alguna razón, tengo problemas para confirmar algo de esto a través de Google. ¿Son 13,6 eV sin importar la temperatura o hay una dependencia de la temperatura?

La temperatura no está definida para un solo átomo.
@ my2cts no para un átomo clásico, pero existen estados cuánticos de un solo átomo con temperaturas bien definidas. Por supuesto, estas no son funciones propias del hamiltoniano.
@Tristan ¿Qué es un átomo clásico? ¿Cómo puede existir un solo estado atómico que no sea una función propia? ¿Quiere decir un estado incoherente descrito por una matriz de densidad?
cierto, el átomo clásico realmente no tiene sentido. Mi punto era principalmente que mientras que clásicamente la temperatura de un solo objeto no tiene sentido, en un sistema cuántico puede
matemáticamente, nada requiere que los estados sean funciones propias del hamiltoniano, es solo que tales funciones propias evolucionan de manera agradable y, por lo tanto, generalmente son más útiles para los cálculos. Intuitivamente, esperamos que el estado global tenga una energía bien definida, pero también esperamos que tenga una posición, momento, orientación, momento angular, etc. bien definidos a pesar de que estos operadores no conmutan y, por lo tanto, tal estado es imposible. No veo ninguna razón por la que nuestra creencia intuitiva de que el universo necesita tener una energía bien definida tenga que ser cierta.
pero si, seria un estado incoherente

Respuestas (4)

Tal vez esto se deba a ignorar los efectos de la temperatura al derivar el hamiltoniano.

¿Cómo estás definiendo el calor a nivel cuántico? La ecuación de Schrödinger describe cómo se comportan los objetos a nivel cuántico y el calor describe una forma de energía que se transfiere entre objetos de diferentes temperaturas. La temperatura es una cantidad macroscópica y no microscópica. La ecuación anterior describe la energía de los electrones en una capa específica y estos electrones pueden cambiar de energía mediante la absorción o emisión de fotones, y los fotones no poseen temperatura.

Ninguna fuente que he visto menciona ninguna suposición sobre la temperatura.

Exactamente por esas razones.

¿Las energías orbitales de los electrones dependen de la temperatura a pesar de esta ecuación común?

No, ellos no son.

Si tiene gas de hidrógeno calentado hasta casi la ionización, entonces debería tomar menos de 13.6 eV para eliminar un electrón.

No. Calentar hidrógeno no provocará la absorción de fotones que se necesita para ionizar hidrógeno (existen otros métodos para la ionización de átomos, pero hablo en el contexto de esta pregunta). Además, el hidrógeno se ionizará con la absorción de fotones con esta energía y no menos . Este es el quid del término energía y otras cantidades se cuantifican a un nivel microscópico que dio lugar a la mecánica cuántica.

¿Son 13,6 eV sin importar la temperatura o hay una dependencia de la temperatura?

Una vez más, la temperatura no es relevante aquí. Para que ocurra la ionización, se debe absorber un fotón (también hay otras formas de ionizar los átomos). Entonces, para responder a su pregunta, no existe tal dependencia.

Tal vez sería instructivo mencionar que la estabilidad de los espectros de un átomo dado es lo que nos permite medir el desplazamiento Doppler de las estrellas que se alejan o se acercan a nosotros. astro.ucla.edu/~wright/doppler.htm
Debido a que el espectro de un átomo dado es independiente de la temperatura, el desplazamiento Doppler del espectro se puede usar para medir la velocidad de la estrella. Si el espectro pudiera ser variable, entonces no se podría usar para tal medición.
Si calienta hidrógeno de tal manera que kT >> energía del estado fundamental, de hecho puede afectar los espectros (por supuesto, ionizará los átomos en un plasma).
También podría ayudar agregar que la temperatura es una propiedad de un conjunto, que refleja la energía de traslación de las partículas, no la energía "interna" de los estados de los electrones.

Además de la respuesta de @joseph h, me gustaría agregar que el efecto de la temperatura en los espectros de los átomos es parte de lo que se conoce como ensanchamiento Doppler de las líneas.

En física atómica, el ensanchamiento Doppler es el ensanchamiento de las líneas espectrales debido al efecto Doppler causado por una distribución de velocidades de átomos o moléculas. Las diferentes velocidades de las partículas emisoras dan como resultado diferentes desplazamientos Doppler, cuyo efecto acumulativo es el ensanchamiento de la línea. Este perfil de línea resultante se conoce como perfil Doppler. Un caso particular es el ensanchamiento Doppler térmico debido al movimiento térmico de las partículas. Entonces, el ensanchamiento depende solo de la frecuencia de la línea espectral, la masa de las partículas emisoras y su temperatura, y por lo tanto puede usarse para inferir la temperatura de un cuerpo emisor.

Cursiva mía

Por cierto, esto fue realmente instructivo y una gran respuesta que muestra que la temperatura es independiente de la temperatura a través de un ejemplo empírico que es independiente de cualquier opinión. Además, no sabía de este fenómeno tan genial.

Creo que esta pregunta desmiente un malentendido de la naturaleza de la temperatura.

La temperatura no es una entrada a las leyes físicas fundamentales, es algo que surge de las leyes físicas cuando se aplica a una gran cantidad de objetos. No hay una temperatura explícita en la ecuación de Schrödinger para un átomo de hidrógeno. El concepto de temperatura solo surge cuando consideras la ecuación de Schrödinger para una gran cantidad de átomos de hidrógeno que pueden intercambiar energía entre sí.

La ecuación de Schrödinger (o las leyes de Newton o las ecuaciones de Maxwell) establecen las reglas básicas de cómo se comportan los átomos y las moléculas (o cualquier otro objeto). Sin embargo, por lo general es difícil determinar qué predicen estas reglas para algo más que sistemas simples. El objetivo de la mecánica estadística es predecir el comportamiento promedio de un gran número de tales sistemas simples bajo las restricciones proporcionadas por las reglas básicas (leyes físicas fundamentales). La temperatura es un concepto que surge de la estadística de gran número de grados de libertad que pueden intercambiar energía. De nuevo, no es una entrada a la ecuación de Schrödinger oa las leyes de Newton, ¡sino una consecuencia de ellas!

La temperatura es una propiedad macroscópica. Los átomos individuales no tienen temperatura. Una analogía sería la desigualdad de ingresos: tiene sentido preguntar cuánta desigualdad de ingresos tiene un país, estado o ciudad, pero no tiene sentido preguntar cuánta desigualdad de ingresos tiene una sola persona. Una versión simplificada de lo que es la temperatura es que es una medida de cuánta diferencia de velocidades hay entre los átomos. Así como no tiene sentido preguntar cuánta diferencia entre ingresos hay cuando se habla de una sola persona, tampoco tiene sentido preguntar cuánta diferencia de velocidades hay si se habla de una sola persona. átomo.

En todo caso, calentar un gas aumentará la energía de ionización. La energía de ionización se da para el marco de referencia del átomo. Si un átomo se mueve a gran velocidad en relación con nosotros, entonces la energía de ionización en nuestro marco de energía aumenta.

No está claro qué quiere decir con "calentado a casi ionización". Según esto , 13,6 eV corresponden a 158 mil grados Kelvin. Entonces, si calentara hidrógeno a esa temperatura, vería la ionización de las colisiones. Pero eso no significa que la energía de ionización disminuya , significa que la energía se cumple .