¿Gödel excluye un TdE viable?

El teorema de incompletitud de Gödel impide un sistema axiomático universal para las matemáticas. ¿Hay alguna razón para creer que también impide una teoría del todo para la física?


Editar:

No he visto antes una formulación de Gödel que incluyera el tiempo. La formulación que he visto es que cualquier sistema axiomático capaz de hacer aritmética puede expresar enunciados que serán 1) imposibles de probar como verdaderos o falsos o 2) posibles de probar tanto como verdaderos como falsos.

Esto lleva a la pregunta: ¿Son las teorías de (casi) todo, sistemas axiomáticos capaces de hacer aritmética? (Dado que pueden describir una computadora digital, creo que es seguro decir que lo son). Si es así, se deduce que tal teoría podrá describir algo que la teoría no podrá analizar o dará como resultado un resultado ambiguo. (¿Podría ser esto lo que obliga a cosas como el principio de incertidumbre de Heisenberg?)

Si uno tiene una teoría recursiva T que parece ser consistente y produce declaraciones verdaderas sobre la física, y si la física es lo suficientemente complicada de la manera correcta (como seguramente lo es), entonces habrá alguna declaración verdadera ϕ acerca de la física que no se puede probar a partir de T . Pero si ϕ puede ser probado después de aumentar T con el axioma adicional `` T es consistente'', espero que sea lo suficientemente bueno para que la mayoría de los físicos, al menos informalmente, piensen en ϕ como consecuencia de T .

Respuestas (8)

La respuesta es no, porque aunque una "Teoría del Todo" significa un método computacional para describir cualquier situación, no le permite predecir el resultado final de la evolución en un tiempo infinito en el futuro, sino solo avanzar, prediciendo el resultado poco a poco a medida que avanza.

El teorema de Gödel es una afirmación de que es imposible predecir el comportamiento en tiempo infinito de un programa de computadora.

Teorema: Dada cualquier forma precisa de producir declaraciones sobre matemáticas, es decir, dado cualquier programa de computadora que escupe declaraciones sobre matemáticas, este programa de computadora produce falsedades o no produce todas las declaraciones verdaderas.

Prueba: dado el programa "TEOREMAS" que genera teoremas (podría estar haciendo deducciones en Aritmética de Peano, por ejemplo), escriba el programa de computadora SPITE para hacer esto:

  • SPITE imprime su propio código en una variable R
  • SPITE ejecuta TEOREMA, y escanea la salida buscando el teorema "R no se detiene"
  • Si encuentra este teorema, se detiene.

Si lo piensas, en el momento en que THEOREMS dice que "R no se detiene", en realidad está demostrando que "SPITE no se detiene", y luego SPITE se detiene, convirtiendo a THEOREMS en un mentiroso. Entonces, si "TEOREMAS" solo genera teoremas verdaderos, SPITE no se detiene y TEOREMAS no lo prueba. No hay manera de evitarlo, y es realmente trivial.

La razón por la que tiene la reputación de ser complicado se debe a las siguientes propiedades de la literatura lógica:

  • Los lógicos están estudiando sistemas formales, por lo que tienden a ser demasiado formales cuando escriben. Esto empantana la literatura lógica en una oscuridad innecesaria y frena el desarrollo de las matemáticas. Es muy poco lo que se puede hacer al respecto, excepto exhortarlos a tratar de aclarar su literatura, como se esfuerzan por hacer los físicos.
  • Los lógicos tomaron la decisión en la década de 1950 de no permitir el lenguaje informático en la descripción de algoritmos dentro del campo de la lógica. Hicieron esto a propósito, para separar la naciente disciplina de la informática de la lógica, y para mantener a las hordas sucias de programadores informáticos fuera de la literatura lógica.

De todos modos, lo que presenté es la prueba completa del teorema de Gödel, usando una traducción moderna del método original de Gödel de 1931. Para una revisión rápida de otros resultados y para obtener más detalles, consulte esta respuesta de MathOverflow: https://mathoverflow.net/a/72151/36526 .

Como puede ver, el teorema de Gödel es una limitación para comprender el comportamiento eventual de un programa de computadora, en el límite del tiempo de ejecución infinito. Los físicos no esperan descifrar el comportamiento eventual de sistemas arbitrarios. Lo que quieren hacer es dar un programa de computadora que siga la evolución de cualquier sistema dado hasta un tiempo finito.

Un ToE es como el conjunto de instrucciones de la computadora del universo. No le dice cuál es el resultado, solo cuáles son las reglas. Un ToE sería inútil para predecir el futuro, o mejor dicho, no es más útil para la predicción que la mecánica newtoniana, la estadística y alguna que otra mecánica cuántica para el día a día. Pero es extremadamente importante filosóficamente, porque cuando lo encuentras, has entendido las reglas básicas y no hay más sorpresas debajo.

Incorporación de comentarios

Hubo comentarios que incorporaré en esta respuesta. Parece que se supone que los comentarios solo son temporales, y creo que algunas de estas observaciones son útiles.

El programa de Hilbert fue un intento de establecer que las matemáticas teóricas de conjuntos son consistentes usando solo medios finitos. Hay una interpretación del teorema de Gödel que dice así:

  • Gödel demostró que ningún sistema puede probar su propia consistencia
  • La teoría de conjuntos demuestra la consistencia de la aritmética de Peano
  • Por lo tanto, Gödel mata el programa de Hilbert de probar la consistencia de la teoría de conjuntos usando la aritmética.

Esta interpretación es falsa y, en mi opinión, no refleja el punto de vista de Hilbert. Hilbert dejó abierta la definición de "finitario". Creo que esto se debió a que no estaba seguro exactamente de lo que debería admitirse como finitario, aunque creo que estaba bastante seguro de lo que no debería admitirse como finitario:

  1. Sin números reales, sin análisis, sin subconjuntos arbitrarios de Z . Sólo axiomas y enunciados expresables en el lenguaje de la Aritmética de Peano.
  2. Ninguna estructura que no puedas realizar explícita y constructivamente, como un número entero. Así que no hay ordinales incontables, por ejemplo.

A diferencia de sus seguidores, no dijo que "finitary" significa "probable en la aritmética de Peano", o "probable en la aritmética recursiva primitiva", porque no creo que creyera que esto fuera lo suficientemente fuerte. Hilbert tenía experiencia con la inducción transfinita y su poder, y creo que él, a diferencia de otros que lo siguieron en su programa, estaba dispuesto a aceptar que la inducción transfinita prueba más teoremas que la inducción ordinaria de Peano.

Lo que no estaba dispuesto a aceptar eran axiomas basados ​​en una metafísica de la existencia establecida. Cosas como el axioma de Powerset y el Axioma de elección. Estos dos axiomas producen sistemas que no sólo violan la intuición, sino que además no están obviamente basados ​​en la experiencia, de modo que los axiomas no pueden ser verificados por la intuición.

Los que siguieron a Hilbert interpretaron finitary como "probable en Peano Arithmetic" o un fragmento más débil, como PRA. Dada esta interpretación, el teorema de Gödel mata el programa de Hilbert. Pero esta interpretación es una locura, dado lo que sabemos ahora.

Hilbert escribió un libro sobre los fundamentos de las matemáticas después del teorema de Gödel, y me gustaría que se tradujera al inglés, porque no leo alemán. Supongo que él dice allí lo que voy a decir aquí.

¿Qué significa finitario?

La definición de finitary es completamente obvia hoy, después de 1936. Una declaración finitary es una declaración verdadera sobre objetos computables, cosas que se pueden representar en una computadora. Esto equivale a decir que un enunciado finito es una proposición sobre números enteros que se puede expresar (no necesariamente probar ) en el lenguaje de la aritmética de Peano.

Esto incluye números enteros, gráficos finitos, cadenas de texto, manipulaciones simbólicas, básicamente, todo lo que maneja Mathematica, y también incluye ordinales. Puedes representar los ordinales hasta ϵ 0 , por ejemplo, utilizando una codificación de cadena de texto de su forma Cantor Normal.

Los ordinales que pueden ser completamente representados por una computadora están limitados por el ordinal de Church-Kleene, que llamaré Ω . Este ordinal es relativamente pequeño en la teoría de conjuntos tradicional, porque es un ordinal contable, que es superado fácilmente por ω 1 (el primer ordinal incontable), ω Ω (el ordinal incontable Church-Kleene-th), y el ordinal de un enorme cardenal. Pero es importante entender que todas las representaciones computacionales de los ordinales son siempre menores que esto.

Entonces, cuando está haciendo matemáticas finitarias, significa que está hablando de objetos que puede representar en una máquina, debe restringirse a ordinales menos que Church-Kleene. Lo siguiente argumenta que esto no es una restricción en absoluto, ya que el ordinal de Church-Kleene puede establecer la consistencia de cualquier sistema.

religión ordinaria

El teorema de Gödel se interpreta mejor de la siguiente manera: dado cualquier sistema axiomático (consistente, omega-consistente), puede fortalecerlo agregando el axioma "consis (S)". Hay varias formas de fortalecer el sistema, y ​​algunas de ellas no están simplemente relacionadas con esta extensión, pero considere esta.

Dado cualquier sistema y un ordinal computable, puede iterar el proceso de fortalecimiento hasta el ordinal. Así que hay un mapa desde los ordinales hasta la fuerza de consistencia. Esto implica lo siguiente:

  • Las teorías naturales están ordenadas linealmente por la fuerza de consistencia.
  • Las teorías naturales están bien fundamentadas (no hay una cadena descendente infinita de teorías A k tal que A k demuestra la consistencia de A k + 1 para todo k).
  • Las teorías naturales se acercan en fuerza al ordinal de Church Kleene, pero nunca lo alcanzan.

Es natural suponer lo siguiente:

  • Dada una secuencia de ordinales que se aproxima al ordinal de Church-Kleene, las teorías correspondientes a este ordinal probarán todos los teoremas de la aritmética, incluida la consistencia de teorías consistentes arbitrariamente fuertes.

Además, las pruebas de consistencia a menudo también se llevan a cabo en lógica constructiva, así que en realidad:

  • Cada teorema que se puede demostrar, en el límite del ordinal de Church-Kleene, obtiene una demostración constructiva.

Esto no es una contradicción con el teorema de Gödel, porque generar una secuencia ordinal que se aproxime a Ω no se puede hacer algorítmicamente, no se puede hacer en una computadora. Además, cualquier ubicación finita no es filosóficamente mucho más cercana a Church-Kleene que donde empezaste, porque siempre queda infinitamente más estructura sin describir.

Asi que Ω lo sabe todo y lo prueba todo, pero nunca puedes comprenderlo completamente. Sólo puedes acercarte mediante una serie de aproximaciones que nunca puedes especificar con precisión, y que siempre son, de algún modo, infinitamente inadecuadas.

Puedes creer que esto no es cierto, que hay afirmaciones que siguen siendo indecidibles por más cerca que te acerques a Church-Kleene, y no sé cómo convencerte de lo contrario, salvo señalando conjeturas de larga data que podrían haber sido absolutamente independiente, pero cayó en métodos suficientemente poderosos. Creer que un sistema formal suficientemente fuerte resuelve todas las cuestiones de la aritmética es un artículo de fe, articulado explícitamente por Paul Cohen en Set Theory and the Continuum Hypothesis . Yo lo creo, pero no puedo probarlo.

Análisis ordinal

Entonces, dada cualquier teoría, como ZF, uno espera que haya un ordinal computable que pueda probar su consistencia. ¿Qué tan cerca hemos llegado de hacer esto?

Sabemos cómo probar la consistencia de la aritmética de Peano --- esto se puede hacer en PA, en PRA o en la aritmética de Heyting (aritmética constructiva de Peano), usando solo el axioma

  • Cada cuenta regresiva desde ϵ 0 termina

Esto significa que el ordinal teórico de demostración de la Aritmética de Peano es ϵ 0 . Eso te dice que la aritmética de Peano es consistente, porque es manifiestamente obvio que ϵ 0 es un ordinal, por lo que todas sus cuentas atrás terminan.

Hay teorías de conjuntos constructivas cuyo ordinal teórico de prueba se entiende igualmente bien, consulte aquí: "Análisis ordinal: teorías con ordinales teóricos de prueba más grandes" .

Para ir más allá se requiere un avance en nuestros sistemas de notación ordinal, pero no existe una limitación de principio para establecer la consistencia de teorías de conjuntos tan fuertes como ZF mediante ordinales computables que pueden ser comprendidos.

Hacerlo completaría el programa de Hilbert --- eliminaría cualquier necesidad de una ontología de conjuntos infinitos al hacer matemáticas. Puede no creer en el conjunto de todos los números reales y aún aceptar la consistencia de ZF, o de cardinales inaccesibles (usando un ordinal más grande), y así sucesivamente en la cadena de teorías.

Otras interpretaciones

No todos están de acuerdo con los sentimientos anteriores. Algunas personas consideran que las proposiciones indecidibles como las proporcionadas por el teorema de Gödel tienen un valor de verdad aleatorio, que no está determinado por nada en absoluto, por lo que son absolutamente indecidibles. Esto hace que las matemáticas sean fundamentalmente aleatorias en su base. Chaitin suele defender este punto de vista. Desde este punto de vista, la indecidibilidad es una limitación fundamental de lo que podemos saber sobre las matemáticas y, por lo tanto, se parece a una mala interpretación popular del principio de incertidumbre de Heisenberg, que lo considera una limitación de lo que podemos saber sobre la posición y el momento simultáneos de una partícula. (como si fueran variables ocultas).

Creo que el teorema de Gödel no se parece en nada a esta mala interpretación del principio de incertidumbre de Heisenberg. La interpretación preferida del teorema de Gödel es que cada oración de la Aritmética de Peano sigue siendo verdadera o falsa, no aleatoria, y debería ser demostrable en un reflejo lo suficientemente fuerte de la Aritmética de Peano. El teorema de Gödel no es un obstáculo para que sepamos la respuesta a cada pregunta matemática eventualmente.

El programa de Hilbert está vivo y bien, porque parece que los ordinales contables menores que Ω resolver todas las cuestiones matemáticas. Esto significa que si alguna declaración no se puede resolver en ZFC, se puede resolver agregando una cadena adecuada de axiomas de la forma "ZFC es consistente", "ZFC+consis(ZFC) es consistente" y así sucesivamente, iterando transfinitamente hasta un ordinal computable contable, o de manera similar comenzando con PA, PRA o aritmética de Heyting (quizás iterando hacia arriba en la escalera de la teoría usando un tamaño de paso diferente, como agregar inducción transfinita al límite de todos los ordinales demostrablemente bien ordenados en la teoría).

El teorema de Gödel no establece la indecidibilidad, solo la indecidibilidad relativa a una axiomatización fija, y este procedimiento produce un nuevo axioma que debe agregarse para fortalecer el sistema. Este es un ingrediente esencial en el análisis ordinal, y el análisis ordinal es simplemente el programa de Hilbert, como se le llama hoy. En general, todo el mundo se equivoca, excepto el puñado de personas que quedan en la escuela alemana de análisis ordinal. Pero esta es una de esas cosas que se pueden arreglar gritando lo suficientemente fuerte.

Torkel Franzén

Hay libros sobre el teorema de Gödel que tienen más matices, pero que creo que todavía no lo entienden del todo bien. Greg P ​​dice, con respecto a Torkel Franzén:

Pensé que el libro de Franzen evitaba todo el asunto de 'el teorema de Goedel fue la muerte del programa de Hilbert'. En todo caso no era tan simplista y de leerlo solo se diría que el programa fue 'transformado' en el sentido de que la gente no se limitará a razonamientos finitarios. En cuanto a las cosas de las que estás hablando, el libro de John Stillwell "Roads to Infinity" es mejor. Pero el libro de Franzen es bueno para cuestiones como la pregunta de BCS (¿se parece el teorema de Gödel al principio de incertidumbre?).

Finitario significa computacional, y una prueba de consistencia solo necesita un ordinal de suficiente complejidad.

Greg P ​​respondió:

La cuestión es entonces qué es 'finitary'. Supongo que asumí que excluía cosas como la inducción transfinita. Pero parece que lo llamas finito. Entonces, ¿cuál es un ejemplo de razonamiento no finitario?

Cuando el ordinal no es computable, si es mayor que el ordinal de Church-Kleene, entonces es infinito. Si usa el conjunto de todos los reales, o el conjunto potencia de Z como conjunto con elementos discretos, eso es infinito. Los ordinales que se pueden representar en una computadora son finitos, y este es el punto de vista que creo que Hilbert promueve en el Grundlagen , pero no está traducido.

Esta respuesta se está discutiendo en MathOverflow

Creo que Game Of Life de Conway es un gran ejemplo aquí. Tenemos la "Teoría del Todo" para el Juego de la Vida de Conway: las leyes que determinan el comportamiento de cada sistema. ¡Son extremadamente simples, solo unas pocas oraciones ! Estas simples "reglas del juego" son análogas a una "teoría del todo" que satisfaría a un físico que vive en el universo Game Of Life.

Por otro lado, puedes construir una computadora completa de Turing en El juego de la vida, lo que significa que puedes formular preguntas sobre el Juego de la vida que no tienen una respuesta demostrable matemáticamente. Las preguntas sonarían algo como:

Aquí hay una configuración complicada de billones de células. A partir de esta configuración, ejecuta el Juego de la Vida durante un número infinito de pasos. ¿Se encenderá alguna vez la celda en tal y tal coordenada?

Estas dos cosas no están realmente relacionadas. Por supuesto que podemos entender la extremadamente simple "teoría del todo" para el Juego de la Vida . Al mismo tiempo, por supuesto, no podemos probar matemáticamente la respuesta a todas las preguntas como la anterior, sobre el comportamiento asintótico de configuraciones muy complicadas de puntos dentro del Juego de la Vida.

Del mismo modo, podemos (uno espera) encontrar el ToE para nuestro universo. Pero ciertamente no podremos demostrar matemáticamente todos los teoremas posibles sobre el comportamiento asintótico de las cosas siguiendo las leyes del universo. Nadie esperaba hacer eso de todos modos.

Creo que estamos de acuerdo hasta cierto punto. vea mi respuesta (principalmente la primera sección) a esta pregunta.
Nadie que necesite la esperanza de una resolución como su motivación. Entonces, todos, además de mí, quieren demostrar que eso es incorrecto, tal vez tal vez no, solo tendría que refutarlo una vez por los cientos de ejemplos que lo respaldan. Lo mismo con cualquier prueba. Nunca sucederá, pero la esperanza más allá de la esperanza es un aspecto clave de la condición humana.
¿Estoy en lo cierto al afirmar que: -1- has probado que hay un universo (llamado Juego de la Vida) que tiene un TOE que no proporciona un medio para responder a todas las preguntas, y -2- esto tampoco implica que haya un TOE para nuestro universo, ni que si hay un TOE para nuestro universo, no proporcionará un medio para responder a todas las preguntas.
@babou: cuando dice "un medio para responder todas las preguntas", parece que está incluyendo "un medio para probar o refutar rigurosamente todos los teoremas posibles sobre lo que sucederá con cada configuración posible de átomos siguiendo las leyes de la física para un tiempo infinitamente largo". Bueno, si eso es lo que quieres decir, entonces estoy de acuerdo, un TOE NO es "un medio para responder todas las preguntas". En otro tema: ¿Existe un TOE para nuestro universo? Creo firmemente que sí, y que lo escribiremos en los próximos 100 años. Pero eso es solo mi creencia, es imposible saberlo con certeza. :-D
Eso no es lo que dije. Un TOE es una descripción. Esta descripción puede, o no, ser efectivamente utilizable para saber ciertas cosas sobre lo que se describe. Por ejemplo, una ecuación puede describir perfectamente un fenómeno, sin ser necesariamente muy utilizable con eficacia. Das un ejemplo de un TOE que no siempre es efectivo. Pero no dice absolutamente nada acerca de nuestro universo. El juego de la vida es discreto, pero no sabemos si el universo también lo es. A menudo usamos matemáticas continuas porque es mucho más fácil que la combinatoria y las matemáticas diofánticas.

La gente tiende a tomar el teorema de Gödel y torcerlo, estirarlo, expresarlo incorrectamente, aplicarlo incorrectamente y, en general, hacerle cosas que, si las hiciera con una cucaracha en Texas, lo arrestarían por crueldad animal. Pero hay un libro, Franzén (2005) , que debería ser suficiente para vacunar a cualquier adulto responsable contra este tipo de conductas pícaras. Algunos puntos hechos por Franzén:

  1. El teorema de Gödel solo se aplica a sistemas axiomáticos formales.
  2. El teorema de Gödel solo se aplica a los sistemas que pueden describir "una cierta cantidad de aritmética" (que se define de una manera técnica específica).
  3. El teorema de Gödel nos dice que cualquier teoría consistente tendrá ciertos enunciados indecidibles. Sin embargo, estas declaraciones normalmente no tienen ningún interés.
  4. Además de la noción de consistencia, existe una de consistencia relativa .

Cualquiera de estos es suficiente para mostrar que el teorema de Gödel no tiene relevancia para la empresa de la física. Vamos a tomarlos uno a la vez.

1. El teorema de Gödel solo se aplica a sistemas axiomáticos formales.

Casi ninguna teoría física útil del mundo real se ha establecido como sistema axiomático formal (con la excepción de Fleuriot, 2001 ). Nunca se ha utilizado tal formalización para hacer física real (es decir, el tipo de cosas que se pueden publicar en una revista). "Sistema axiomático formal" significa algo muy diferente para un lógico de lo que un físico podría imaginar. Significa reducir todas las declaraciones posibles de la teoría a cadenas de caracteres, y todos los axiomas de la teoría a reglas para manipular estas cadenas, enunciadas tan explícitamente que una computadora podría verificarlas. Este tipo de formalización no es necesario ni suficiente para que una teoría física sea válida, útil o interesante.

2. El teorema de Gödel solo se aplica a los sistemas que pueden describir "una cierta cantidad de aritmética".

Esto es más una limitación de lo que te imaginas. En nuestra cultura científica actual, vamos a la escuela y aprendemos aritmética, luego geometría y el sistema de números reales. Esto nos hace imaginar que los números enteros son un sistema matemático simple y los reales uno más complicado construido sobre los números enteros. Esto no es más que un sesgo cultural. La teoría elemental de los números reales es equivalente a la teoría elemental de la geometría euclidiana. ("Elemental" tiene un significado técnico, siendo equivalente a la lógica de primer orden). La geometría euclidiana elemental es incapaz de describir "una cierta cantidad de aritmética" como se define en el teorema de Gödel. Por tanto, el teorema de Gödel no se aplica a la teoría elemental de los números reales y, de hecho, se ha demostrado que esta teoría es consistente y completa (Tarski, 1951). Es muy posible que un ToE pueda expresarse en lenguaje geométrico, sin el uso de ninguna aritmética, o en el lenguaje del sistema de números reales. por ejemplo, elPrincipia está redactado completamente en el lenguaje de los Elementos de Euclides , y tampoco es obvio para mí que haya alguna obstrucción para enunciar teorías como las ecuaciones de Maxwell o la relatividad general en el lenguaje del sistema de números reales, usando lógica elemental.

3. El teorema de Gödel nos dice que cualquier teoría consistente tendrá ciertos enunciados indecidibles. Sin embargo, estas declaraciones normalmente no tienen ningún interés.

Creo que esto se explica por sí mismo. Y no creo que la decidibilidad sea una propiedad necesaria o particularmente deseable para un ToE; pocas teorías interesantes en matemáticas son decidibles y, sin embargo, la mayoría de los matemáticos no dedican tiempo a preocuparse por eso.

4. Además de la noción de consistencia, existe una de consistencia relativa.

Es posible demostrar que un sistema axiomático es equiconsistente con otro, lo que significa que uno es autoconsistente si y solo si el otro lo es. Si tuviéramos un ToE, y pudiéramos convertirlo en un sistema axiomático, y fuera el tipo de sistema axiomático al que se aplica el teorema de Gödel, entonces probablemente sería equiconsistente con algún otro sistema bien conocido, como alguna formulación de análisis real. . Cualquier duda sobre la consistencia del ToE sería entonces equivalente a la duda sobre la consistencia del análisis real, pero nadie cree que el análisis real carezca de consistencia.

Finalmente, ¿por qué nos importa la "coherencia"? Estoy usando las comillas porque estamos hablando de física. Cuando hablo con un matemático sobre la "autoconsistencia" de una teoría, la reacción habitual es una mirada en blanco o una corrección condescendiente. La autoconsistencia es el único tipo de consistencia que le importa a un matemático. Pero un físico se preocupa por más que eso. Nos preocupamos por si una teoría es consistente con un experimento . No hay una buena razón para preocuparse si no se puede demostrar que un ToE es autoconsistente, porque hay otras preocupaciones que son mucho mayores. El ToE podría ser autoconsistente, pero alguien podría hacer un experimento que demostraría que estaba equivocado.


J. Fleuriot, Una combinación de demostración de teoremas de geometría y análisis no estándar con aplicación a los principios de Newton , 2001

T. Franzén, Teorema de Gödel: una guía incompleta para su uso y abuso , 2005

A. Tarski, Un método de decisión para álgebra y geometría elementales , 2ª rev. ed., 1951 [Reimpreso en sus Collected Papers , vol. 3.]

El punto 3 es el único que me preocupa un poco: (por cierto, estoy de acuerdo con toda tu respuesta): podría significar que un TOE es algo más grande que la "naturaleza". Creo que este requisito podría ayudar a guiar a un TOE en el sentido de que a uno le gustaría asegurarse de alguna manera (Dios sabe cómo) de que todo lo indecidible sería irrelevante. O, como dice Ron Maimon, todo lo indecidible no es relevante para los tiempos finitos. Hay algunas formulaciones inquietantemente "prácticas" de proposiciones indecidibles: Roger Penrose las recopila (estoy tratando de encontrarlas ahora). Además, ¿son importantes los derechos de los animales en Texas :)?
El nivel de aritmética que una teoría debe ser capaz de expresar para que se apliquen los teoremas de Gödel no es cero, pero aún así es fácil de alcanzar. Dudo mucho que los físicos alguna vez revelen su comprensión de los números y tomen lo que se necesita para construir una teoría de la gravitación y los campos cuánticos o lo que sea sobre algo así como una axiomatzización de primer orden de los reales como tales, que está demasiado lejos de los conjuntos. estructuras Y en cualquier caso, si se aplica el primer punto y no hay una formalización real de la teoría física, entonces el segundo punto no importa de todos modos.
@NickKidman: Estoy de acuerdo contigo en que 2 es un punto menos seguro que 1, 3 y 4, y que 1 es suficiente. (Creo que cualquiera de los cuatro es suficiente). Dudo mucho que los físicos alguna vez revelen su comprensión de los números . No tienes que revelar ninguna comprensión. Cuando pones una teoría en el tipo de forma axiomática muy estricta requerida por el teorema de Gödel, no estás limitando cómo puedes pensar sobre ella.
@BenCrowell: solo menciono que al usar una teoría completa de negación decidible en lugar de una teoría aritmética fuerte, renuncia a algunas declaraciones sintácticas. Para su información, existen teorías débiles sobre la aritmética que, por lo tanto, no se ven afectadas por la incompletitud, consulte en.wikipedia.org/wiki/Self-verifying_theories
@NickKidman No quiero poner demasiado énfasis en las estructuras de primer orden, pero quiero señalar que se está apresurando demasiado. Los físicos estarían muy contentos de abandonar la teoría de conjuntos. Una bola en el espacio euclidiano es la unión de los conjuntos de puntos únicos que están dentro de ella, pero de esa manera no se puede construir una esfera física de materia a partir de masas puntuales. Entonces, la teoría ondulatoria de la materia hace que la estructura de una bola como conjunto parezca incluso menos relevante que la de las grandes bolas de fuego, solo considere
un problema indecidible típico: la equivalencia de pares de operadores en un espacio de Hilbert es indecidible, pero casi todos esos pares no son físicos. La igualdad de dos álgebras de Lie dadas por generadores y relaciones podría ser (lo olvidé) indecidible, pero la física nunca se hace esa pregunta. Hay excelentes razones para pensar que los únicos subespacios de Hilber que son físicos deben tener una intersección densa con los vectores K-finitos de todo el espacio de Hilbert (K el subgrupo compacto máximo del grupo de Lorentz). Esto descarta a casi todos los operadores....

Si una "Teoría del Todo" significa un método computacional para describir cualquier situación, y existen fórmulas aritméticas verdaderas (como ha demostrado Gödel) que no pueden probarse, existen fórmulas aritméticas verdaderas que son necesarias para describir alguna situación que no puede descubrirse computacionalmente, o si se descubre incidentalmente, no se puede probar que sea cierto. Entonces, por ejemplo, para que este método computacional sea completo, necesitaría poder probar la validez de las matemáticas y la lógica, sin usar las matemáticas y la lógica, ya que las matemáticas y la lógica están separadas de la física.

La definición anterior de que "el teorema de Gödel es una declaración de que es imposible predecir el comportamiento de tiempo infinito de un programa de computadora". es a la vez incorrecto y anacrónico (al principio, Gödel rechazó la definición de Church-Turing de 'computabilidad', pero más tarde (es decir, en 1946) finalmente tuvo que descubrirlo por su cuenta). Además, Gödel no era un científico informático, incluso si su lógica les fuera útil en una fecha posterior. El problema descrito anteriormente es una aplicación específica del teorema de Gödel llamado "Problema de la detención", pero su teorema es mucho más amplio que eso y sus implicaciones son mucho mayores. Lo que básicamente establece el primer teorema de Gödel es que:

Cualquier sistema axiomático generado efectivamente S no puede ser consistente y completo. En particular, para cualquier sistema axiomático efectivamente generado S que es consistente que prueba que ciertas conclusiones básicas son verdaderas, hay algunas conclusiones básicas verdaderas que no son demostrables dentro de ese sistema S .

Para cualquier sistema axiomático formal generado efectivamente S , si S incluye un enunciado de su propia consistencia, entonces S es inconsistente.

Una de las respuestas anteriores señaló que:

  1. El teorema de Gödel solo se aplica a sistemas axiomáticos formales (lo cual es cierto)

Sin embargo, continuó sugiriendo que "Casi ninguna teoría física útil del mundo real se ha declarado como sistemas axiomáticos formales". Esto es completamente falso dada la forma en que Gödel definió los sistemas axiomáticos formales. Por sistemas axiomáticos formales, Gödel quiso decir 'computable', es decir, cualquier sistema capaz de derivar resultados (conclusiones) a través de funciones (o lógica) que sea algorítmicamente computable. La física se basa completamente en dos de estos sistemas: Matemáticas y Lógica, lo que significa que la Física también lo es.

¿Realmente se sugiere que la física no es computable? La física hace predicciones usando matemáticas y lógica, los cuales son sistemas axiomáticos formales. La física también describe su comportamiento observado utilizando los mismos sistemas. La física es nada menos que un sistema axiomático formal utilizado para describir la naturaleza, aunque presupone estos otros sistemas. Incluso si se observan o miden algunos de sus axiomas, deriva resultados de estos, o leyes sobre ellos a través de funciones que computables ( mi = METRO C 2 , F = METRO A ), por lo que Gödel se aplica absolutamente.

Esto significa que una Teoría del Todo y, de hecho, la física debe ser internamente consistente, pero incompleta, lo que significa que en realidad no puede describir todas las situaciones posibles, o debe ser completa pero inconsistente, lo que significa que puede describir todas las situaciones posibles, pero contener inconsistencias (auto- contradicciones). Que la física requiera de las matemáticas para probar sus propias verdades muestra que la física es incompleta (puesto que necesita presuponer la consistencia de las matemáticas como un sistema axiomático) así como las matemáticas requieren de la lógica para probar sus teoremas (por la misma razón, las matemáticas no pueden probar la lógica, pero simplemente debe presuponerlo). Esta es una evidencia directa de la afirmación de Gödel de que ningún sistema axiomático puede probar su propia consistencia y, por lo tanto, es incompleta. Además,

Cualquier 'Teoría del Todo' no puede ser completa ya que no puede explicar las matemáticas o la lógica, y habrá fenómenos físicos cuyo comportamiento no se podrá calcular. Así como la física misma, la física de un TOE, además de la observación física, requiere matemáticas y lógica, mostrando cuán incompleta es la física en sí misma (aunque es consistente).

tl;dr; Un ToE puede existir bajo Gödel y todavía 'describir' todo lo físico pero, por ejemplo, no podrá 'describir' cosas intelectuales .
Sí, tienes razón, por supuesto, pero al enfatizar esto, estaba mostrando que la física es incompleta, teniendo que depender de algo más que la mera observación. Al reconocer que la física también se basa en la metafísica, es decir, la lógica y las matemáticas, se mostraba lo incompleto de la física (lo que parece ser una amenaza real para algunas personas). Sin embargo, esto no va en contra del teorema de incompletitud: la física sigue siendo consistente. Pero si la física está incompleta, habrá verdades indemostrables que no podrá tocar, lo cual es el meollo de la cuestión.
El mismo Goedel demostró que la lógica de primer orden era consistente y decidible. ¿Me estoy perdiendo de algo? Sigues afirmando las conclusiones de Goedel sin lo que entiendo como una hipótesis esencial: tiene que incluir la aritmética de Peano, más específicamente, el principio de inducción matemática. La lógica de primer orden no incluye esto, y tampoco (afaik) la geometría euclidiana.
Si observa las demostraciones de Gödel en "Sobre las proposiciones formalmente indecidibles de Principia Mathematica y sistemas relacionados I", muestran que sus teoremas son verdaderos para todos los sistemas formales generales generales, incluido 'Principia Mathematica'. Es cierto, usó como ejemplo el "... problema relativamente fácil en la teoría de números enteros ordinarios", sin embargo, su prueba fue suficiente para cubrir 'y sistemas relacionados I' ya que estaba buscando el caso general. Gödel entendió que dos sistemas axiomáticos son "equivalentes" si todas y sólo las derivaciones posibles por uno son posibles por el otro.
Agregaré que en realidad solo estaba usando las pruebas de Peano para su estructura. A partir de la prueba de Peano, construyó 'axiomas de proposición' eliminando las propiedades fundamentales específicas de Peano de los números naturales e insertando una fórmula arbitraria que los representaba (p, q y r). [Incluso dice esto en su artículo, aunque está en alemán] Así que esto muestra cómo pasó de un ejemplo aritmético específico a un caso general, es decir, lógica de primer orden. Podría hacer esto porque todo lo expresable en aritmética es expresable en lógica (o geometría, teoría de conjuntos, celosías, etc.)
@ user34445: "se movió... al caso general, lo que significa lógica de primer orden" --- esto es tan incorrecto como puede ser. La lógica de primer orden está completa, y esto fue probado por primera vez por Gödel.
Esta no debería ser la respuesta correcta. La física utiliza principalmente los números reales y complejos, los cuales son teorías matemáticas completas y consistentes. Los teoremas de incompletitud de Gödel son enunciados sobre la inducción.
Su definición si 'completo' es incorrecto. Estás confundiendo 'cerrado' con 'completo'. La física requiere reglas de inferencia que se encuentran fuera de la física. El mismo ejemplo que diste de números complejos requiere conocimiento (y reglas de inferencia) de números no complejos para que sea significativo. Solo definiendo estrictamente las reglas de interferencia y excluyendo el conocimiento no complejo se completa el conjunto complejo. Sin embargo, el conjunto complejo está cerrado.
Aquí hay otra forma de verlo... ¿el espacio que describe la física es un 'espacio numérico racional'? En caso afirmativo, haga la pregunta '¿el espacio de números racionales está completo'? Se sabe que la completitud del espacio de números racionales NO es completa.
El problema es que la completitud se usa en los infinitos. Los autómatas finitos son analizables por fuerza bruta. Los enunciados, como los números de Goedel, son enunciados idiotas sobre la realidad en el infinito. Los "resultados" incomputables sobre la realidad ya son una tontería. Es un mito que el cálculo o el análisis requieran completar la línea real, todos los resultados son aproximadamente verdaderos sobre los racionales. Además, el universo moderno en su totalidad puede muy bien tener energía finita y, por lo tanto, ser un solo autómata finito (ni siquiera Turing-completo, pero aproximadamente si su poder computacional comparable es aún peor).
@WillO Su respuesta no es correcta porque se equivoca entre la lógica en su totalidad y ese subconjunto conocido como "lógica deductiva". Sí, la lógica deductiva está completa, pero la lógica en sí misma no lo está. ¿Observe que la lógica deductiva no es suficiente para probar todas las proposiciones verdaderas? También necesitamos lógica inductiva y abductiva. El teorema de completitud de Gödel se aplica solo a la lógica deductiva.

No estoy de acuerdo con tu declaración del teorema de Gödel. El teorema de incompletitud de Gödel dice que en cualquier lenguaje formal que sea lo suficientemente fuerte para hacer aritmética (es decir, puede escribir los axiomas de Peano) siempre habrá una declaración verdadera que no se puede probar. Lo que Gödel hizo para probar esto fue construir algo como la paradoja del mentiroso en cualquiera de esos lenguajes:

Esta oración no es demostrable.

No creo que esto tenga ningún efecto sobre si hay o no un ToE viable, pero no sé mucho sobre el ToE.

Siento que el teorema de incompletitud de Gödel se malinterpreta mucho. No afirma si las declaraciones son verdaderas o no, simplemente dice que no podemos probar todo lo que es verdadero; algunas cosas simplemente son.

Una forma de ver esto es en términos del sexto problema de Hilbert , es decir, axiomatizar la física. Ahora bien, se puede decir que lo que Hilbert entendió de "axiomatizar" es refutado por los resultados de Gödel (y Gentzen). (Ver su segundo problema ).

El programa de axiomatización de Hilbert no es refutado por Gödel, pero lo refuerza. Aunque los Grundlagen der Mathematische (sp? Foundation of Mathematics) de Hilbert no están disponibles en inglés, la respuesta básica al teorema de Gödel esbozado allí es la de Gentzen y el resto de la escuela alemana. Gentzen trabajó con Hilbert y siguió su programa. Demostró la consistencia de la aritmética de Peano por medios finitos, y solo una redefinición de finito motivada políticamente en la posguerra para excluir las cuentas regresivas ordinales hizo que su prueba fuera "infinita".

tl;dr; Todos los universos posibles son de escala finita y son "demasiado pequeños" para poder codificar todas las conjeturas posibles para que no puedan operar sobre ellas y, por lo tanto, no puedan probar su veracidad. Por lo tanto, un modelo de universo completamente computable no puede violar el teorema de Gödel.

Extractos de varios otros lugares en las respuestas:

Creo que la respuesta se convierte en una de dos cosas:

Opción A: el teorema de Gödel no impide la existencia de medios mecánicos para determinar la veracidad de una conjetura arbitraria. (Aunque no estoy seguro de que Gödel impida esto, lo impide por reducción al problema de la detención).

Opción B: que el teorema de Gödel implica que, incluso dado un TOE válido y computable, no existe un mapeo entre las conjeturas aritméticas y los estados del universo de modo que alguna propiedad identificable se cumpla si las conjeturas son correctas. Esto podría ser (y sospecho que es) cierto simplemente porque el conjunto de todas las conjeturas posibles es más grande (un infinito de orden superior o ordinales más grandes) que el conjunto de todos los estados posibles de los universos que pueden existir bajo el TOE.

En realidad, el teorema de la incompletud es el camino hacia una teoría del todo.

El teorema dice aproximadamente que necesitas un supersistema para demostrar de manera consistente y completa los axiomas de un sistema.

Entonces, lo que debe hacer es envolver nuestras medidas en un sistema más grande. Actualmente modelamos nuestras medidas de frente.

Si pudiéramos modelarlos indirectamente, de modo que emergieran de la teoría en lugar de suponerse automáticamente, haríamos un gran avance.

El biocentrismo de Lanza promete algo de eso.

Vea la respuesta del usuario 34445: el 'supersistema' es matemática y lógica.