¿Por qué ATP es la opción preferida para los portadores de energía?

¿Por qué el ATP es la forma más frecuente de almacenamiento y utilización de energía química en la mayoría de las células?

la energía de la hidrólisis del fosfato es más o menos similar para la mayoría de las NTP. En comparación con el GTP, el ATP requiere una enzima menos para su síntesis. Los trifosfatos de pirimidina también son moléculas de alta energía pero tienen funciones especializadas.
Podría valer la pena echar un vistazo a este gran artículo de FH Westheimer Por qué la naturaleza elige fosfatos , publicado en Science en 1987
Es un documento interesante, gracias por recomendarlo. SI alguien que no tiene acceso a través de una universidad quiere leer este documento, consulte aquí: academic.evergreen.edu/curricular/m2o2006/seminar/…
Aunque el ATP es sin duda el trifosfato sintetizado con mayor frecuencia , el GTP se usa con bastante frecuencia para impulsar reacciones: el GTP proporciona 2/3 de la energía para la síntesis de proteínas, lo que representa un gasto energético importante para la mayoría de las células. Por lo tanto, diría que la preferencia por ATP sobre otros NTP no es tan fuerte como podría parecer a primera vista.
El enlace academic.evergreen.edu está roto, pero el artículo de Westheimer aún vive en archives.evergreen.edu/webpages/curricular/2006-2007/m2o2006/…
Me pregunto si el oxígeno tiene algo que ver con eso. Consulte la teoría de MH Zhou aquí : "Mire y compare las estructuras químicas de la adenina y el ATP con las de la guanina... el nivel de oxígeno en la Tierra [primitiva] estaba por debajo del 0,1% en comparación con el 20% actual. Por lo tanto, la adenina era mucho antes que La guanina apareció en la Tierra hace miles de millones de años en la Tierra primitiva. Esto se debe a que la adenina no tiene un átomo de oxígeno en su estructura, mientras que la guanina tiene 1 átomo de oxígeno en su estructura...."

Respuestas (3)

Realmente me gusta esta pregunta, ya que es una base tan fundamental de toda la vida en el planeta, sin embargo, hay tanta escasez de información real sobre sus orígenes y por qué la selección premió el uso de ATP sobre cualquier otra cosa. Aquí estoy hablando en general, ya que no existen estudios específicos en ATP frente a otros candidatos.

Gran parte de la información a continuación se tomó de un artículo relativamente antiguo mencionado en los comentarios de TomD que analiza: "Por qué la naturaleza eligió los fosfatos". por Westheimer, 1987 . El artículo es muy influyente y ha sido citado más de mil veces desde su publicación. Otro artículo que salió el mismo año en que se hizo esta pregunta : "¿Por qué la naturaleza realmente eligió el fosfato?". por Kamerlin et al., 2013

Algunos de los siguientes argumentos son más convincentes que otros, pero todos deben tenerse en cuenta al intentar responder a esta pregunta.

Resumen.

  • ATP tiene dominio ancestral. La mayoría de las otras razones se derivan de esto.

  • Es posible que los grupos de fosfato alternativos u otras moléculas no proporcionen suficiente energía.

  • Las alternativas pueden ser tóxicas.

  • Otras moléculas, en particular los fosfatos, se utilizan para explosiones de alta energía ineficientes.

  • Pi es un grupo saliente "bueno".

  • Los fosfatos son fundamentalmente capaces de regularse mediante manipulación electrostática.

  • La ATP sintasa puede volver a unir eficientemente el Pi a ADP.

  • Gran cantidad de Pi disponible para los organismos debido a su dominio ancestral ("si no está roto, ¿por qué arreglarlo?" está en juego).

  • ATP puede proporcionar más energía si es necesario; es escalable a la situación. (ADP se convierte en AMP + Pi)

  • Fácilmente utilizable por una variedad de proteínas.

¿Por qué ATP?

El ATP es una molécula biosintetizada eficiente y relativamente fácil que puede cumplir múltiples funciones bioquímicas. Las células tienen portadores de energía alternativos, algunos con funciones más especializadas, sin embargo, el ATP es omnipresente en todas nuestras células y espacios intercelulares. No hay una gran cantidad de recursos que expliquen por qué el ATP es mejor que otros compuestos, sin embargo, hay muchas razones por las que se requieren los fosfatos.

¿Por qué no las alternativas?

Los ácidos cítricos y sus derivados son un buen candidato, con grupos deducibles y alta biodisponibilidad pero simplemente no dan suficiente energía para estabilizar el material genético.

Otro candidato tribásico es el ácido arsénico. Sin embargo, este es un compuesto fundamentalmente tóxico, que no es particularmente bueno para los seres vivos.

También hay otros fosfatos, y se utilizan en muchos organismos. En biología, tienen funciones específicas y no se utilizan como portadores de energía general. Por ejemplo, el trifosfato de creatina proporciona un enlace fosfoanhídrido de alta energía, que a menudo se usa para regenerar ATP de forma rápida y anaeróbica, útil durante la actividad muscular de alta frecuencia para la contracción.

El GTP es estructuralmente muy similar al ATP. Las GTPasas se utilizan más para iniciar vías de señalización celular. A veces se utiliza como fuente de energía. Este es un buen ejemplo de un portador de energía alternativa.

A lo largo de los años, muchas proteínas se han especializado con una forma específica, y esta posibilidad es la razón principal detrás de ATP sobre GTP. En otras palabras, la elección de ATP sobre GTP se debe principalmente a la preferencia celular de forma molecular. Uno de ellos tenía que emerger como el más utilizado, y fue el ATP el que 'ganó'.

Eficiencia y sencillez.

Alguna vez se pensó que la reacción era un desplazamiento nucleofílico relativamente simple. Del artículo de 2013:

...esta simplicidad es engañosa, ya que, incluso en una solución acuosa, los orbitales d situados a baja altura en el átomo de fósforo permiten ocho posibilidades mecanísticas distintas, incluso antes de introducir las complejidades de las reacciones catalizadas por enzimas.

Tradicionalmente, se le enseñará a uno que el ATP es una forma químicamente eficiente de almacenar y transportar energía. Esto se debe a la reacción de hidrólisis ATP->ADP & Pi. Los grupos fosfato del ATP están llenos de cargas negativas y se repelen entre sí. Esto significa que el tercer fosfato es un gran grupo saliente y la ruptura del enlace fosfoanhídrido es una reacción favorable. ...

...Pero la historia es mucho más complicada que eso. La explicación anterior no es realmente satisfactoria porque esas mismas fuerzas de carga negativa son repulsivas del nucleófilo que intenta completar ATP->ADP y Pi. Una explicación más completa iría en la línea de "aunque existe una repulsión de carga negativa entre el nucleófilo de la proteína y el fosfato, esa barrera de alta energía puede superarse mediante la manipulación electrostática". Esto permite un "interruptor de encendido y apagado" para la reacción hidrolítica ajustando el entorno electrostático. Esta es otra gran herramienta reguladora que proporcionan los fosfatos. Esta característica reguladora es importante para las cascadas de señales y metabólicas/catabólicas.

Cuando se trata de "reunir" Pi a ADP, es bastante fácil ya que ADP rara vez se une covalentemente a algo, lo que requeriría mucha energía para recuperar el ADP. Esto también ayuda a la biodisponibilidad de ADP libre a ATP sintasa , una enzima increíblemente eficiente que utiliza el gradiente de protones de la membrana para impulsar la producción de ATP. Hablar de números reales es difícil aquí, ya que solo hay datos disponibles de hepatocitos de rata. ¿Quién puede decir que los mamíferos son representativos de todos los organismos? Las estimaciones de la energía de hidrólisis van desde ΔG˚ = -48 kJ mol-1 hasta -30,5 kJ mol-1. Tenga en cuenta que estos son valores considerables, pero no excepcionales, por lo que es fácil que muchas proteínas diferentes, que no necesitan ser muy especializadas, rompan el vínculo en todo el cuerpo. Ni siquiera pude encontrar los números para la reacción de la sintasa por ATP, pero una sola ATP sintasa puede producir hasta 600 ATP por minuto.

El punto final de esta eficiencia es que los elementos del ATP son muy abundantes y están establecidos en la biosfera, lo que los hace fácilmente disponibles. Esto hace que los fosfatos sean una biomolécula conveniente.

Multifuncionalidad.

El ATP es omnipresente en el cuerpo, pero en algunos casos se necesita más energía que ATP disponible. En estos tiempos de necesidad, el ATP puede usarse para producir más energía, rompiendo otro enlace fosfoanhídrido para convertirse en AMP+2Pi. Sin embargo, AMP es típicamente una molécula de señalización.

Con la baja energía de activación requerida para romper el enlace fosfoanhídrido, una multitud de enzimas, demasiadas para enumerarlas aquí, pueden usar ATP para obtener energía para la energía de activación para muchas otras funciones.

Creo que esta respuesta mezcla la ventaja de los fosfatos como portadores de energía con el predominio del ATP. El caso de los fosfatos está muy bien presentado en el artículo de Westheimer de 1987; pero hay pocas razones para suponer que el ATP es químicamente especial en comparación con, por ejemplo, el GTP; la prevalencia del ATP sobre otros trifosfatos probablemente sea solo una coincidencia evolutiva. Y el argumento de que el ATP es "una gran biomolécula" porque es "abundante en la biosfera" es obviamente circular.
@Roland Excelentes puntos, pero permítanme explicar que cuando digo que la abundancia la convierte en una biomolécula "buena", no estoy haciendo un argumento circular. Una vez que cualquier compuesto se establece en la sopa primordial y se propaga, es más conveniente/probable que se use esa molécula que una alternativa. Este es un punto valioso, y es menos circular de lo que parece a primera vista.
Parece que accidentalmente explicaste por qué AMP es una molécula de señalización. AMP señala baja energía.
Realmente me gusta cómo las dos respuestas principales comienzan con sus puntos de vista opuestos sobre si les gusta o no la pregunta.

No me gustan este tipo de preguntas porque no creo que realmente se puedan responder y sospecho mucho de los argumentos que parecen afirmar que ATP es la única o incluso la mejor solución al problema. La naturaleza generalmente demuestra que hay más de una forma de matar a un gato, pero si una forma funciona adecuadamente, no siempre es necesario buscar otra.

Este no es necesariamente el caso, por supuesto, si consideramos un ejemplo del mundo del ARN postulado , que abordaré ahora, la catálisis que usa ARN fue suplantada en la mayoría de los casos por la catálisis que usa proteínas. Entonces, a veces, una mejor solución proporciona una ventaja evolutiva y, a veces, si las cosas funcionan lo suficientemente bien, se quedan porque el factor limitante está en otra parte.

Así que tiendo a la opinión de que ATP funcionó, por lo que se mantuvo. Probablemente fue casualidad que no fuera GTP, CTP o UTP, ya que estos funcionan como fuentes de energía en la transducción de señales, la síntesis de fosfolípidos y la síntesis de glucógeno, respectivamente.

Pero esto plantea la cuestión de la función o necesidad del anillo de purina o pirimidina en los nucleósidos trifosfatos. Por lo que puedo ver, la respuesta es que esto no cumple una función indispensable. (Claro, se une a las enzimas, pero todo tipo de otras estructuras pueden hacer esto). Así que me gustaría volar la siguiente cometa (que debe haber volado antes, aunque no tengo conocimiento de una referencia).

Un nucleótido trifosfato (ATP) se convirtió en la fuente de energía preferida en el metabolismo después de que evolucionara un mecanismo de síntesis de ARN que usaba NTP como sustratos.

Cuando la síntesis de ARN evolucionó para usar la energía libre de la hidrólisis de una 'extensión difosforilada' de su componente estructural (NMP), se extendió al metabolismo un sistema de uso de una hidrólisis relacionada. Tenga en cuenta que digo 'relacionado', ya que la síntesis de ARN (como otras síntesis macromoleculares) hidroliza el enlace fosfodiéster alfa-beta (liberando pirofosfato), mientras que en el metabolismo generalmente es el enlace beta-gamma el que se hidroliza (liberando ortofosfato).

La hidrólisis de ATP habría desplazado lo que se cree que era un sistema(s) de generación de energía previo a la replicación porque presumiblemente habría sido mejor y habría permitido un metabolismo energético integrado. (Las demandas de energía de la replicación habrían sido grandes). Pero eso no significa que sea el mejor método concebible: trabajar bien y ser conveniente podría haber sido suficiente.

Nota

Aunque no forma parte de mi argumento, hay otra molécula clave en el metabolismo que tiene lo que puede considerarse un componente de adenosina 'inútil': NAD (y NADP). La tripa redox de esto es el anillo de nicotinamida. ¿Evolucionó esto a partir de una forma que inicialmente era parte de una ribozima, quizás involucrada en la formación de desoxirribosa cuando el genoma de ARN estaba siendo desplazado por el genoma de ADN?

@Jaime. OK, reescribiré mi respuesta, pero dame unos días. Simplemente pasando de un período flojo a uno ocupado.
Revisé mi respuesta, cortando la crítica de la respuesta aceptada y ampliando la idea de la evolución a partir del uso en la síntesis de ARN. Si, como imagino, esta idea ha sido expresada anteriormente, agradecería una referencia para poder citarla.
No estoy convencido de que el ATP se use con más frecuencia que los otros nucleótidos por casualidad. En las primeras etapas de la evolución celular, debe haber competencia por el nucleótido que daba la mayor aptitud, y resultó ser ATP. ¿Por qué? Esa es una muy buena pregunta.
@rhody Está bastante justificado al sentir que la respuesta a esta pregunta sin respuesta no es casualidad. Sin embargo, lo que no está justificado, en mi opinión, es la suposición de que una respuesta no aleatoria es del tipo que usted supone, a saber, que las NTP eran la mejor molécula para el trabajo y que ATP era la mejor de las NTP. En el último caso podría ser, por ejemplo, que el ATP fuera el 'más barato' de sintetizar, o que las purinas se unieran mejor a las ribozimas que a las pirimidinas. Y si los NTP fueran una consecuencia de la estructura del ARN del genoma, entonces la selección se produjo en el ARN, es decir, no fue 'pura casualidad'.

Prefacio

Ya he proporcionado una respuesta a esta pregunta, abordando un aspecto de la misma: por qué un nucleótido trifosfato, en lugar de cualquier otra molécula, fue la elección como portador de energía. En esa respuesta, sugiero que la elección de ATP, en lugar de GTP, CTP o UTP, fue mera casualidad.

Esta segunda pregunta, de hecho, se ha planteado , pero se consideró, en mi opinión incorrectamente, como un duplicado. Recientemente me di cuenta de una investigación que me sugiere una posible razón para la preferencia de ATP sobre otros NTP y, como es independiente de mi respuesta anterior, me gustaría presentarla como una respuesta separada.

¿Por qué ATP en lugar de otros NTP?

Parto de la suposición de un mundo de ARN en el que algún tipo de genoma de ARN ha desarrollado la capacidad de replicarse y exhibir actividad enzimática. El ribosoma, y ​​especialmente el ARN ribosómico, puede considerarse un fósil de ese mundo. Harry Noller, en una revisión de este tema en Science en 2005 , considera las bases que están involucradas en el apareamiento de bases en los muchos bucles de doble hélice de ARN y aquellas que no están apareadas en dichos bucles. Muchos de estos últimos están involucrados en interacciones ternarias en el rRNA, que tiene una estructura general similar a la de una proteína. Un hecho significativo que menciona sobre las bases que no están apareadas en las estructuras secundarias helicoidales es su distribución sesgada:

“Sin embargo, las bases no apareadas no se distribuyen uniformemente entre las cuatro bases. En Escherichia coli 16S rRNA, por ejemplo, las proporciones de bases no apareadas para G, C y U son del 31 %, 29 % y 33 %, respectivamente, mientras que el 62 % de As no están apareadas, una tendencia que se extiende a otros ARN funcionales. .

Resulta que muchos de estos 'As desapareados' están involucrados en lo que se denominan interacciones de nucleósidos menores A-tipo II, que se ilustran en la Fig. 3 de ese documento, a continuación:

Tipo II A-interacciones menores en rRNA

En la leyenda de esta figura Noller señala que:

Estas interacciones precisas de ranura menor de bloqueo y llave entre (generalmente) una adenosina y un par de bases de Watson-Crick se encuentran ampliamente en el ARNr 16S y 23S. Se observaron por primera vez en el empaquetamiento de cristales de la ribozima de cabeza de martillo y en el dominio P4-P6 de la ribozima del grupo I. Las interacciones A-minor juegan un papel funcional importante en el control de la interacción codón-anticodón por parte del ribosoma a través de su ajuste estereoquímico único a los pares de bases de Watson-Crick.

De esto concluyo que la adenina tiene propiedades estructurales únicas que le permitirían formar una interacción más fuerte y precisa con los pares de bases en un ARN de ribozima que las otras tres bases. Una de las características de cualquier ribozima involucrada en el uso de un NTP para impulsar reacciones químicas habría sido unir el NTP. (Vemos esto en proteínas contemporáneas con Rossman Fold que se une a la adenina).

La mayor idoneidad de la adenina de ATP para esta función puede ser la razón por la cual, en lugar de GTP, CTP o UTP, se convirtió en la principal opción (supongo que inicial) como portador de energía.

Si esta idea ha sido expresada antes, me disculpo por no reconocer el hecho. Hágamelo saber. De lo contrario, lo lees aquí primero.