¿Por qué no podemos ver la luz que viaja del punto A al B?

Digamos que tenemos una nube de polvo que tiene un año luz de diámetro y alguien dispara un rayo de luz desde el punto A al B, ¿por qué no es posible que un observador muy lejano vea la luz mientras viaja a través de la nube a la velocidad? ¿de luz?

luz

¿Sabes que no es posible?
Aquí está el problema: calcula la intensidad necesaria para la fuente original cuando hablas de escalas de longitud del orden de años luz. Incluso con un haz original altamente colimado (¡pero no perfectamente!), la luz dispersada se proyecta en una gran cantidad de área sólida y, por lo tanto, cae con la dependencia familiar. Por lo tanto, diseñe el sistema de detección correcto y eso no es un gran problema, pero confíe en, digamos, el globo ocular Mk I y tendrá problemas.
Cualquier luz que entre en tu ojo no es luz que viaja a B.
En la mayoría de las nebulosas, la densidad de la materia es menor que el vacío que creamos en la Tierra. Hay dispersión, pero no mucha, pero es la única razón por la que podemos ver la luz visible de las nebulosas en primer lugar. Por supuesto, al ser de tan baja intensidad, tendemos a confiar en la emisión infrarroja, pero incluso eso es el resultado del calentamiento, en algunos casos de una estrella cercana.
No estoy seguro de si esta es una pregunta sobre ecos de luz o un malentendido fundamental de lo que significa ver algo.
En la mayoría de los casos, lo llamaría "ver el polvo mientras el pulso de luz viaja a través de él" en lugar de "ver el pulso de luz mientras viaja a través del polvo". Por supuesto, con lo que realmente interactúas no es con ninguno de los dos, es la luz emitida por el polvo o reflejada por el polvo cuando el pulso de luz encuentra el polvo. Lo que usted llama no es realmente tan relevante, pero puede conducir a una nueva perspectiva o comprensión.
Marqué esta pregunta como "no está claro lo que estás preguntando". En este momento, la mitad de los lectores parecen suponer que la pregunta es por qué el observador no ve la luz, y la mitad de los lectores parecen suponer que la pregunta es por qué el observador no ve que el polvo se ilumina gradualmente de A a B.
Si el observador está más lejos que B, entonces la luz ya habrá llegado a B a menos que la nube la frene lo suficiente.

Respuestas (8)

A veces lo hacemos, y el fenómeno se llama eco de luz .

ingrese la descripción de la imagen aquí

Lo que estás viendo NO es gas en movimiento. Es un "eco" exactamente como usted describe.

El problema es que necesitas un pulso de luz. Si tiene un flujo de luz constante, los "ecos de luz" serán exactamente como los que ve en la niebla en la Tierra.

Este es un enlace fantástico, pero creo que se necesita una explicación más profunda. Al menos digamos que el pulso se debe a una supernova.
No estoy convencido de que esto responda a la pregunta de OP, al menos no directamente. Creo que esto podría usar un poco más de detalle sobre cómo / por qué responde.
@KyleKanos Point A es la nova; el punto B está en cualquier otro lugar.
Cosas tontas Fuzzy (y Ernie). Aprendo algo nuevo cada día.
Esta es la estrella de la animación: en.wikipedia.org/wiki/V838_Monocerotis
@CeesTimmerman, entonces el Punto B incluye al observador.
¿Cuál es la cantidad de tiempo representada en este gif?
@duzzy esa información está en la página de wikipedia vinculada en "ejemplos".
@duzzy: según los subtítulos en la imagen de Wikipedia , es un poco menos de 2 años: mayo de 2012 a febrero de 2014.
Técnicamente, el observador todavía no ve la luz que viene de A a B, sino solo una parte de la luz reflejada, por supuesto, en ese proceso. Pero supongo que el OP simplemente asumió que no es posible por alguna razón, cuando de hecho lo es.

Sería posible ver el progreso de los fotones a través del espacio si el pulso de luz fuera extremadamente intenso y si la nube de polvo de la que se reflejan estuviera posicionada y moldeada para reflejar la luz hacia nosotros. En lugar de disparar un rayo desde el punto A al punto B, sería mejor si la fuente de luz estuviera entre nosotros y la nube de polvo, ya que la luz reflejada en la nube nos parecería más intensa y es más probable que la veamos. Es mejor si el pulso fuera instantáneo, ya que de lo contrario parecería ser una bola de gas difusa en expansión sin detalles interiores, como señala John Rennie en su comentario.

Todas estas condiciones se cumplieron con el enlace que proporcionó NeuroFuzzy, que parece ser una fotografía de lapso de tiempo de un pulso de luz de V838 Monocerotis haciendo eco de un polvo podría detrás de él, el eco de luz más espectacular en la historia de la astronomía, según el Agencia Espacial Europea.

Es mucho más brillante incluso que una supernova, pero no es exactamente una explosión. La luz del pulso inicial llegó a la tierra en 2002. V838 Monocerotis no perdió su piel exterior. En cambio, se expandió enormemente en tamaño, hasta que su piel exterior no estaba mucho más caliente que una bombilla. Este es un comportamiento muy inusual y puede haber sido causado por una estrella canibalizando a otra.

La animación del eco de luz NO representa desechos expulsados. Lo que ves es la luz misma reflejándose en el polvo interestelar que se encuentra principalmente detrás del progenitor, no frente a él. El eco de luz forma un elipsoide en expansión con V838 Monocerotis en un foco y nosotros, los observadores, en el otro. Es cóncavo hacia nosotros. Una buena descripción está en el artículo de Wikipedia, que es el último enlace a continuación.

Aquí hay un relato del evento y un video de lapso de tiempo aún mejor, gracias al telescopio Hubble: http://www.theatlantic.com/technology/archive/2014/06/space-cannibalism-is-beautiful/373260/ . Es fascinante ver el progreso de los propios fotones a medida que recorren grandes distancias.

Aquí hay una historia más completa del evento, con una bibliografía: http://www.phschool.com/science/science_news/articles/enigmatic_eruption_v838.html .

El artículo de wikipedia también incluye una buena bibliografía de referencias a este pulso de luz y el eco de luz posterior: https://en.wikipedia.org/wiki/V838_Monocerotis .

Me cuesta entender por qué parece una nube de polvo en expansión. ¿Qué veríamos si en lugar de un flash fuera una iluminación continua? ¿Sería el resultado de mezclar todos los marcos juntos?
@Ruslan: verías una bola de gas brillante en expansión. El resplandor de las regiones exteriores de la bola tendería a enmascarar los detalles del interior. La cantidad de detalles internos que vería dependería de qué tan denso fuera el gas.
@JohnRennie ¿Gas incandescente? Seguramente te refieres a reflejar el polvo.
@CeesTimmerman: sí, solo quiero decir que se vería como si estuviera brillando porque estaría dispersando la luz. El polvo en sí es frío.
¿Cómo es esto una respuesta a la pregunta? En el mejor de los casos, esta es una explicación de la completa falta de detalles de Neuro en su respuesta.
@KyleKanos También enlaza con un video más detallado.
@KyleKanos: Agregué un nuevo primer párrafo para responder directamente a la pregunta, en lugar de solo explicar la respuesta de Neuro.

Si parte de la luz se refleja en el polvo en un ángulo tal que se desvía para alcanzar al observador, el observador verá esa luz. Sin embargo, esos fotones específicos que llegan al observador no llegarán a B (a menos que sean reflejados allí por el observador). De manera similar, a menos que el observador esté en el punto B (que no es el caso en la pregunta formulada), o que la luz se refleje desde B hacia el observador, la luz que llega a B no llegará al observador.

El observador puede usar la experiencia pasada sobre el comportamiento de la luz, etc. para inferir que la fuente de la luz no son las partículas de polvo sino A, y que cualquier luz que no sea disipada por el polvo llegará a B. Por ejemplo, en la siguiente imagen, puede inferir que la fuente de la luz es el sol y que parte de la luz, no disipada por partículas en el aire, probablemente alcanzará puntos particulares en el suelo en ese campo. Aquí, también podemos ver que parte de la luz que llega a esos puntos en el suelo se refleja hacia el observador, lo que confirma la inferencia.

rayos de sol sobre el campo asomándose a través de las nubes

El observador, ilustrado como un ojo, es un detector de luz que solo detecta la luz que le llega, el observador, no la luz que no le llega. (Esa es la respuesta corta a la pregunta). El observador también tendrá que esperar el tiempo que sea necesario para que los fotones vayan de A a lo que sea que se refleje, al observador.

Por el contrario, en esta segunda foto, ciertas frecuencias de luz se reflejan desde B (puntos en el suelo) hacia el observador, pero el camino que sigue la luz no se muestra tan claramente debido a la diferente cantidad de partículas en el camino entre esos puntos de tierra y la fuente de luz.

rayos de luz solar

Usando una cámara que puede capturar "Movimiento a un billón de fotogramas por segundo" , esto se puede hacer a escala de laboratorio. La técnica empleada ha sido denominada femtofotografía .

ingrese la descripción de la imagen aquí

(Crédito de la imagen de Ramesh Raskar, profesor asociado, MIT Media Lab)

Por supuesto, una cámara que literalmente toma un billón de fotogramas completos por segundo es totalmente imposible con la tecnología actual. Suponiendo un tamaño de cuadro de 1000x1000 píxeles y 3 bytes por píxel, una cámara de este tipo tendría que generar una tasa de datos sin procesar total de al menos 3 10 18 bytes/segundo o 24 mil millones de Gigabit/segundo!

En su lugar, la escena fotografiada debe ser repetible (es decir, totalmente inmóvil y sin variaciones en la iluminación ambiental). Se utiliza un láser para enviar muchos pulsos cortos de luz a la escena. Además de iluminar la escena, el pulso de luz láser activa un tubo de rayos , que captura de manera efectiva una línea de exploración de la imagen. Con múltiples exposiciones repetidas, las líneas de escaneo se pueden construir en una imagen y múltiples imágenes en un video de movimiento completo. El truco está en la cuidadosa sincronización del tiempo y los puntos de vista.

Más información del MIT aquí .

Este es un buen ejemplo de "ver la luz moverse", pero sería bueno incluir un poco más de descripción del experimento en lugar de simplemente vincular a un sitio externo (que puede volverse obsoleto)
Tu descripción es engañosa. La animación que incluyó no muestra la propagación real de un solo pulso de luz. Que yo sepa, ninguna cámara existente es capaz de capturar tal velocidad de cuadro con tal calidad. ------ En su lugar, capturaron millones de imágenes de millones de exposiciones repetidas de pulsos de luz discretos: utilizamos un método 'estroboscópico' indirecto que registra millones de mediciones repetidas mediante un escaneo cuidadoso en el tiempo y los puntos de vista. Luego reorganizamos los datos para crear una 'película' de un evento de nanosegundos de duración.
Recuerdo que todos los artículos de noticias en ese momento eran igualmente engañosos. Todos dijeron "Dios mío, una cámara que sea lo suficientemente rápida como para mostrar la luz en movimiento", lo cual es una completa tontería.
@LightnessRacesinOrbit Espero haber aclarado esto un poco, aunque a juzgar por los continuos votos a favor del comentario de pabouk, tal vez no hice un gran trabajo al respecto. En otras noticias: ¿puedes ser observado mientras corres en órbita? Quizás esa sería la mejor respuesta a esta pregunta ;-)
@DigitalTrauma: :P ¡De hecho, es una pregunta similar!

Digamos que construyes un contador de pelotas de ping pong. Incrementa el conteo cada vez que una pelota de ping pong golpea el sensor.

Lanzas una pelota y golpea el sensor: ¡Detectado!

Lanzas una pelota a través del sensor de izquierda a derecha... sin detección, porque no golpeaste el sensor.

Su globo ocular es un sensor de luz, que crea imágenes a partir de la luz que llega a su nervio óptico . No puedes ver la luz que no entra en tu ojo.

Para extender esta metáfora al "eco de luz" en la otra respuesta: lanzas un billón de pelotas de ping pong al mismo tiempo, y una pequeña fracción de ellas rebota en los obstáculos de la habitación y golpea el sensor (que también sabe en qué dirección fue golpeado desde)

Mi proyecto de maestría fue algo como esto (aunque con líneas de emisión alfa de hidrógeno para nubes de gas entre galaxias en lugar de polvo entre estrellas) y la respuesta en ese caso (y casi seguro también en este) es que no puedes verlo porque es demasiado tenue, aunque usar cientos de horas de telescopio puede acercarte (tal vez).

Nuevamente, esto no es exactamente lo mismo, pero es un concepto relacionado: http://arxiv.org/pdf/0711.1354v1.pdf

(Ese no era yo, pero era el documento al que me refería con más frecuencia).

Bajo las condiciones estipuladas, la pregunta es una declaración falsa . De hecho, podríamos " ver" el haz de luz entre los puntos A y B. A medida que los fotones viajan del punto A al B, algunos fotones se desviarán (al chocar con las partículas de polvo) en nuestra dirección, permitiéndonos para "ver" la viga. Solo en ausencia de partículas de polvo (o cualquier otra partícula), no podríamos ver el haz de luz.
Para evitar complicaciones debido a la intensidad de la luz, las grandes distancias y la difusión, el experimento se realiza en un laboratorio, utilizando un rayo láser, y la distancia entre A y B es igual a un nanosegundo de luz.

Si el fotón que describiste se va a mover de A a B, no hay razón para que puedas verlo en la posición C. Porque si pudieras ver el fotón, se habría movido de A a C, donde estás tú, no B. Por lo tanto, no puedes ver el camino por el que viaja la luz, a menos que, como dijeron otros, algo como un átomo lo desvíe. En todas las respuestas anteriores, algo ha reflejado la luz para que llegue a la cámara del fotógrafo. De lo contrario, es imposible ver ese fotón.