Equivalente de Norton del circuito LRC acoplado capacitivamente

El siguiente diagrama es una representación esquemática de un filtro de muesca de elementos agrupados de microondas. El objetivo es analizar el circuito LRC paralelo y derivar una expresión para S 21 ( ω ) , donde el puerto 1 está en la fuente y el puerto 2 se mide a través de la impedancia de carga Z 0 , que podría ser la entrada a un amplificador.

esquemático

simular este circuito : esquema creado con CircuitLab

Mi intento de simplificar el circuito se muestra a continuación, donde la impedancia del resonador se ha condensado en Z r mi s para mayor claridad, donde

Z r mi s = ( 1 R r + j ω C r + 1 j ω L r ) 1 = R r 1 + j ω R r C r X , dónde  X = ω 2 ω 0 2 ω ω 0 ω 0 2 = 1 L r C r

esquemático

simular este circuito

Mi pregunta es, ¿es legal la transformación de a a b? Y si es así, ¿cómo se relacionan Cc y Zres con Cc' y Zres'? Además, si alguien tiene algún consejo sobre métodos alternativos para simplificar este circuito, agradecería cualquier comentario.

Gracias por tu tiempo.

se parece más a un filtro de paso de banda que a un filtro de muesca.
Hola Andy: leí tu comentario ayer y he estado tratando de formular un argumento sobre por qué es un filtro de muesca, aparte de lo que indica la simulación en ADS. Mi intuición dice que debería actuar como un paso de banda, ya que la impedancia en la resonancia debería ser grande (suponiendo que R sea grande), por lo que no fluirá corriente y el voltaje caerá en la carga. Lejos de la resonancia, la impedancia es pequeña, por lo que la carga se cortocircuita. Mmm.
@Andyaka, está bien, creo que lo he descubierto. Mientras que la impedancia del circuito LRC es infinita en ω 0 2 = 1 / L r C r , existe una condición en la que la impedancia de la combinación en serie del condensador de acoplamiento y el resonador es cero, a saber ω r 2 = 1 / L r ( C r + C C ) . Bajo esta condición, actúa como un filtro de muesca. Sin embargo, la pregunta sigue siendo cómo analizarlo adecuadamente...
¿Alguna idea sobre cómo analizar este circuito?

Respuestas (1)

Al analizar el filtro, siento que este no es un filtro de muesca. Explicaré por qué no es un filtro de muesca. Si alguien tiene una opinión diferente, por favor infórmeme.

Condición 1: suponga que nuestra entrada es dc . es decir Vg=Vdc(significa que no hay componentes de frecuencia. Por lo tanto ω=0). Entonces Zlr = jωLr = 0y Zcc = 1/jωCc= infinity. Esto significa que no habrá flujo de corriente a través del circuito paralelo Cc y RLC, en este caso. Por lo tanto, cualquiera que sea la entrada, aparecerá completamente en la salida. Por lo tanto salida Vo = Vmax.

Condición 2: suponga que nuestro componente de frecuencia de entrada es infinito ; es decir (ω=infinito). En este caso, ambos Zcc = Zcr = 0. Esto hará que la salida esté conectada a tierra a través de capacitores Ccy Cr. Así que aquíVo = 0

Condición 3: Ahora suponga que el componente de frecuencia está entre 0 e infinito . Entonces, la impedancia del circuito RLC y el capacitor Cc será finita y, por lo tanto, seguramente esta línea tiene una corriente que corresponde a esta impedancia. Por lo tanto, la corriente a través de Zo estará entre Vmax y 0 en este caso.

Según este análisis, si dibujamos un gráfico entre el voltaje y la frecuencia, podemos ver que resultará en un low pass filter response. (Dado que la salida es máxima en ω=0 y mínima en ω=infinito).

Intentaré proporcionar el análisis de este circuito más adelante. Gracias

EDITAR :

*Análisis**

Impedance of parallel circuit
     Zrlc = 1/[1/Z1 + 1/Z2 + 1/Z3] = Z1.Z2.Z3/(Z1.Z2+Z2.Z3+Z3.Z1)
     Substituting impdance values
     Zrlc = (R2).(1/sC2).(sL2)/[(R2/sC2)+(R2.sL2)+(sL2/sC2)] 
     Zrlc = s(R2.L2)/[R2-(R2.L2.C2)+sL2]
Impedance of circuit line that consist of C1 and RLC circuit
     Z = Zc1 + Zrlc
     Z = (1/sC1) + (s(R2.L2)/[R2-(R2.L2.C2)+sL2])
     From the equation, Z will be clearly a complex quantity. Let assume
     Z = (X - jω.Y)

La ecuación muestra que Z será cero cuando ω = ω0 (de modo que X = ω0.Y). Entonces la condición 3 puede dividirse nuevamente en dos secciones.

Condición 3.a: cuando 0 < ω < ω0 (baja frecuencia), la impdancia capacitiva será dominante y la impdancia inductiva puede considerarse cero. Esto hace que el circuito RLC se cortocircuite (ya que la impedancia del inductor es cero). Así que la impedancia existente es la de capacitor Cc. Entonces el circuito se verá así.

esquemático

simular este circuito : esquema creado con CircuitLab

Entonces, a medida que aumenta ω, la impedancia del capacitor se vuelve baja. Esto hace que aumente la corriente a través del condensador. Esto conduce a la reducción del flujo de corriente a través de la carga. Por lo tanto, Vo = Io x Zo se vuelve bajo. Esto sucederá en el rango 0 < ω < ω0

Condición 3.b Cuando ω > ω0 (alta frecuencia), la carga inductiva se vuelve dominante y la impedancia capacitiva se vuelve muy baja. Por lo tanto, podemos asumir cargas capacitivas como impedancia cero. Esto hace que la salida se desvíe a tierra a través capacitor Ccde y capacitor Cr. Entonces la salida permanece cero desde ω > ω0.

Suposición final: Ahora tenemos

      Vo = { Vmax ;  ω = 0
           { below Vmax and reduces as  ω increases ;  0< ω< ω0
           { 0 ;  ω = ω0
           { 0 ;  ω >  ω0

Esta es seguramente la respuesta de un 'filtro de paso bajo' (caso ideal)

Hola @rajeevktomy, gracias por tomarte el tiempo de responder. Si bien sus condiciones 1 y 2 son correctas, la condición 3 se salta el comportamiento en torno a ω 0 , que no es tan simple como lo has descrito. Como mencioné arriba, abajo ω 0 Existirá una condición en la que la reactancia inductiva sea cancelada por la reactancia capacitiva del condensador de acoplamiento y la impedancia de entrada llegue a cero, por lo que se producirá un cortocircuito. Z 0 . Si tiene la oportunidad de simular este circuito, debe encontrar las condiciones 1 y 2 como ha indicado, pero alrededor ω 0 , actuará como un filtro de muesca. Salud.
@ bazza1988 he editado mi respuesta. Por favor, revíselo y hágame saber sus comentarios.
Una vez más, gracias por tomarse el tiempo para discutir esto. No puedo ver nada malo en tu análisis, pero parece que te has perdido la condición que dije que era la más importante, es decir, cuándo ω ω 0 . Solo alrededor de la frecuencia resonante de LRC+Condensador de acoplamiento se convierte en un filtro de muesca. Para otras frecuencias, su análisis se mantiene. Salud.
@bazza1988: saludos :)